

Physiology of Fruit Trees

Bahram Baninasab Department of Horticulture College of Agriculture Isfahan University of Technology

Seasonal Cycle of Deciduous Fruit Trees

- Dormancy Period (mid autumn- mid winter)
- Release dormancy
- Accumulation of heat requirement
- Growth Period (early spring- early autumn)

Dormancy

Type of dormancy:

- Endo-dormancy (Rest, Winter dormancy)
- Eco-dormancy (Quiescence, Imposed dormancy)
- Ecto-dormancy (Para-Dormancy, Correlated Dormancy)

Time

Figure 6.2. General changes in levels of plant growth substances which occur during the four stages of dormancy.

Flower Bud Dormancy

Dormancy is overcome by a period of chilling temperatures (Chilling Requirement)

Type of Tree	Approximate Hours	Equivalent Time in Days or Weeks if Continuously Exposed to 7.2 °C/45 °F or Below		
Almond	200-300	8–13 days		
Apple	1200-1500	7–9 weeks		
Apricot	700–1000	4–6 weeks		
Cherry, sour	1200	7 weeks		
Cherry, sweet	1100-1300	6–8 weeks		
Chestnut	300-400	2–3 weeks		
Fig	few hours	—		
Filbert (Hazelnut)	1500	9 weeks		
Kiwifruit	600-850	3.5–5 weeks		
Olive	200-300	8–13 days		
Peach/Nectarine	650-850	4–5 weeks		
Pear	1200-1500	7–9 weeks		
Pecan	400-500	3–4 weeks		
Persimmon	<100	4 days		
Pistachio	1000	6 weeks		
Plum, American	3600	5 months		
Plum, European	800-1100	5–6 weeks		
Plum, Japanese	700–100	4–6 weeks		

The chilling requirement is measured using mathematical models

- Utah Model (Richardson)
- Low Chilling Model
- North Carolina Model

Table 1: Chill unit factors (CUF) used with Utah (UT), Low chilling (LC) and North Carolina (NC)models.

Utah Model		Low Chilli	ng Model	North Carolina Model		
(U)	Τ)	(Le	C)	(NC)		
Temperature	Chill Unit	Temperature	Chill Unit	Temperature	Chill Unit	
(⁰ C)	Factor (CUF)	(⁰ C)	Factor (CUF)	(⁰ C)	Factor (CUF)	
<1.5	0	≤1.7	0	≤1.5	0	
1.5-2.4	0.5	1.8-7.9	0.5	1.6-7.1	0.5	
2.5-9.1	1	8-13.9	1	7.2-12.9	1	
9.2-12.4	0.5	14-16.9	0.5	13-14.6	0.5	
12.5-15.9	0	17-19.4	0	16.5-18.9	0	
16-18	-0.5	19.5-21.4	-0.5	19-20.6	-0.5	
>18	-1	≥21.5	-1	20.7-22	-1	
				22.1-23.2	-1.5	
				≥23.3	-2	
			• •		+	

(Adapted from Carla et al., 2004)

Seasonal Cycle of Deciduous Fruit Trees

• 1-Buds swelling phase

Critical Temperatures for Frost Damage on Fruit Trees

Published by Utah State University Extension and Utah Plant Pest Diagnostic Laboratory

IPM-012-11 February 2011

Critical Temperatures for Frost Damage on Fruit Trees

Marion Murray, IPM Project Leader

The following table, developed by Washington State University, lists Fahrenheit temperatures for each stage of development at which 10% and 90% bud kill occurs after 30 minutes exposure. The percentage bud kill which causes crop

reduction will vary with each crop. For example, to have a full crop of cherries requires well over 50% bud survival in most years, while apples, pears, and peaches may only need 10-15% bud survival.

	Silver Tip	Green Tip	Half-Inch Green	Tight Cluster	First Pink (Pink)	Full Pink (Open Cluster)	First Bloom (King Bloom)	Full Bloom and Post-bloom
10%	15	18	23	27	28	28	28	28
90%	2	10	15	21	24	25	25	25

	Swollen Bud (Scale Separation)	Bud Burst (Blossom Buds Exposed)	Green Cluster (Tight Cluster)	White Bud (First White, Popcorn)	Full White	First Bloom (King Blossom)	Full Bloom	Petal Fall (Post-bloom)
10%	15	20	24	25	26	27	28	28
90%	0	6	15	19	22	23	24	24

2- Bud break (Bud burst) phase

Thermal time (Thermal unit) Growth Degree Days (GDD) Growth Degree Hours (GDH)

$$GDH = \sum_{\text{Bud Break}} \begin{bmatrix} 24 \\ \sum_{0}^{24} (T_h - 4.4 \text{°C}) \\ Base \text{Temperature} \end{bmatrix}$$

8

Type of bud	Cultivar	Year	Chilling requirement (h)	Heat requirement (GDH)	Date of bud break
Flower	Kale-Ghuchi	2007	750	8 852	3 April
		2008	800	9324	27 March
	3 Owhadi	2007	1 000	13 320	8 April
		2008	1 050	12 871	29 March
	2 Ahmad-Aghaei	2007	900	12 432	10April
		2008	850	11 988	28 March
	4 Akbari	2007	1 200	15 420	18 April
		2008	1 200	14 208	8 April
Vegetative	Kale-Ghuchi	2007	900	9 768	5 April
		2008	950	9637	29 March
	Owhadi	2007	1 200	11 100	5 April
		2008	1 2 5 0	11 520	28 March
	Ahmad-Aghaei	2007	1 050	10 656	8 April
		2008	1 050	10874	27 March
	Akbari	2007	1 400	12 544	12 April
		2008	1 400	11 863	6 April

Table Chilling and heat requirements of pistachio cultivars

From: Rahemi and Pakkish (2009)

TABLE I							
Dates and the number of days' delay in 1979 of attaining different stages of fruit bud development in control and water	ed						
rees. The bud development of the watered trees was assessed for the whole tree (average) and on well-wetted sectors of the tree	ee.						

Stage of fruit bud development		Date of attainmen	Number of days' delay		
	Control	Average	Well-wetted	Average	Well-wetted
Mouse-ear	15 April	27 April	10 May	12	25
Green-cluster	26 April	9 May	16 May	13	20
Pink-bud	8 May	16 May	21 May	8	13
First bloom	14 May	20 May	28 May	6	14
Full bloom	16 May	25 May	30 May	9	14

From: Hamer, P. J. C. (1981).

-

Genetic Control of Blooming Time

by permission from Faust, et al., 1976.)

gure 4.16 Distribution of bloom time of various progenies of pear hybrids. ays of bloom of parents in comparison to 'Bartlett' are given in parentheses eprinted by permission from Faust, et al., 1976.)

- Chilling Requirement Hours
- Heat Requirement Hours
- Genetic
- Plant Growth Regulators (Cytokinins such as Benzyladenin)
- Respiration of Dormant Flower Buds
 - Cytochrome Oxidase System (COS, General Respiration)
 - Cyanide-Resistant Respiration (CRR)
 - *Energy: CRR 1/3 less than COS
 - * Temperature: CRR lower sensitive to low temperature